
Prevent legacy to sink your 

software vessel
Ard Willems

Bits & Chips Smart Systems Conference, 1 October 2015



2

Origin of this presentation:

“This organization 

is like a 

container ship. 

Changing its 

course takes

a lot of time

and effort.”



3

• This quote is from the software project manager of one of my first 

projects

• During my software engineering and architecting projects I found that 

software organizations made the same mistakes when growing in size; 

three phases can be distinguished

• Also during software quality assessments we do for companies I find a 

lot of similarities between organizations

• I have found that three advices help in preventing or overcoming 

these mistakes

• When adhering to these advices, the company will become more 

efficient, and legacy code will no longer be an issue

Content



3 phases 3 advices end goal

Today’s Journey



3 phases

Today’s Journey



6

The

Rowing Boat
aka The Startup



Business idea 

Find investors.



8



9

Build results



Technical Debt

Legacy



11

The Steam Boat
aka The Medium Sized Company



Growing 

software 

archive

Growing 

software 

team

Need for 

processes



Don’t 

rush!
• Important decisions 

should not be made at 

the coffee machine

• The most experienced 

software engineer is 

often not the best 

software architect

• Take your time to 

create suitable 

processes



14

Competent managers
aim for efficiency and continuous improvement



15

The Container 

Ship

aka The Multinational



16

Code complexity
• 8x more defects

• 0.5x productivity

• 10x staff turnover

Source: Technical Debt in Large Systems: Understanding the Cost of Software Complexity, Dan Sturtevant PhD, MIT 



3 advices

Today’s Journey



How to fix it?

18

Change design:

• Suits requirements

• Fit for future

• Doesn’t change behavior



Doesn’t change behavior... :

 + $ = 0 ?

• Refactoring costs time and money, but does not add 

new features

• A project leader will therefore not benefit from 

refactoring for his project



project

line

$

$

Responsibility for refactoring

• A budget needs to be 

assigned to enable 

refactoring

• A line manager can be made 

responsible

• In an agile environment, it 

can be an explicit 

responsibility of the teams



Continuous Integration



• Software engineer proposes a changed design

• Estimated effort is three weeks

• One year later, the project is still not finished, 

and is canceled

There are three causes for this setback...

An example of a refactoring project



Periodical 

Integration
• Features are added 

before a certain deadline

• If you want your change 

to be in the next release, 

deliver before that 

deadline



• After the deadline: 

merging, compiling, 

testing starts

• Test plan includes long 

manual testing



Whoever is 

responsible for 

the failing 

integration, has 

to fix it, or 

withdraw his 

delivery



Because of the following three aspects of CI

This could have been avoided with

Continuous Integration









Benefits

of 

continuous 

integration

periodical 

integration

long 

integration 

times

polluter 

pays 

principle

merge 

continuously

Challenges 

of 

refactoring

test quickly discoverer 

pays



32

Embrace 

Innovation



33



“Because 

we’ve always

done it this

way.”

If a software engineer asks 

why a certain technology or 

process is used, the worst 

possible answer is:



Let software engineers do pilots with new technology



36



end goal

Today’s Journey



Desired focus

organization size

fo
cu

s

software quality
time-to-market



The end goal:

Small, flexible teams, that continuously add value to your products, with the 

freedom to change their course when they see fit.



Thank you

Have a safe journey


